Write your name here Surname	Other nar	nes
Pearson Edexcel Level 3 GCE	Centre Number	Candidate Number
Psycholo Advanced Subsidi Paper 2: Biologica Theories	ary	Learning
Sample assessment mate September 2015 Time: 1 hour 30 minute	-	Paper Reference 8PS0/02
You do not need any other	materials.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 70.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.
- The list of formulae and critical value tables are printed at the start of this paper.
- Candidates may use a calculator.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

PEARSON

S47536A©2014 Pearson Education Ltd.
1/1/1/1/1

FORMULAE AND CRITICAL VALUE TABLES

Standard deviation (sample estimate)

$$\sqrt{\left(\frac{\sum(x-\bar{x})^2}{n-1}\right)}$$

Spearman's rank correlation coefficient

$$1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

Critical values for Spearman's rank

Level of	significance	for a one-tail	led test
----------	--------------	----------------	----------

	Level of	one-tailed	i test		
	0.05	0.025	0.01	0.005	0.0025
	Level of	significa	nce for a t	wo-tailed	l test
N	0.10	0.05	0.025	0.01	0.005
5	0.900	1.000	1.000	1.000	1.000
6	0.829	0.886	0.943	1.000	1.000
7	0.714	0.786	0.893	0.929	0.964
8	0.643	0.738	0.833	0.881	0.905
9	0.600	0.700	0.783	0.833	0.867
10	0.564	0.648	0.745	0.794	0.830
11	0.536	0.618	0.709	0.755	0.800
12	0.503	0.587	0.678	0.727	0.769
13	0.484	0.560	0.648	0.703	0.747
14	0.464	0.538	0.626	0.679	0.723
15	0.446	0.521	0.604	0.654	0.700
16	0.429	0.503	0.582	0.635	0.679
17	0.414	0.485	0.566	0.615	0.662
18	0.401	0.472	0.550	0.600	0.643
19	0.391	0.460	0.535	0.584	0.628
20	0.380	0.447	0.520	0.570	0.612
21	0.370	0.435	0.508	0.556	0.599
22	0.361	0.425	0.496	0.544	0.586
23	0.353	0.415	0.486	0.532	0.573
24	0.344	0.406	0.476	0.521	0.562
25	0.337	0.398	0.466	0.511	0.551
26	0.331	0.390	0.457	0.501	0.541
27	0.324	0.382	0.448	0.491	0.531
28	0.317	0.375	0.440	0.483	0.522
29	0.312	0.368	0.433	0.475	0.513
30	0.306	0.362	0.425	0.467	0.504

The calculated value must be equal to or exceed the critical value in this table for significance to be shown.

Chi-squared distribution formula

$$X^{2} = \sum \frac{(O-E)^{2}}{E}$$
 $df = (r-1)(c-1)$

Critical values for chi-squared distribution

	0.10	0.05	0.025	0.01	0.005	0.0005
			ignificance			
df	0.20	0.10	0.05	0.025	0.01	0.001
1	1.64	2.71	3.84	5.02	6.64	10.83
2	3.22	4.61	5.99	7.38	9.21	13.82
3	4.64	6.25	7.82	9.35	11.35	16.27
4	5.99	7.78	9.49	11.14	13.28	18.47
5	7.29	9.24	11.07	12.83	15.09	20.52
6	8.56	10.65	12.59	14.45	16.81	22.46
7	9.80	12.02	14.07	16.01	18.48	24.32
8	11.03	13.36	15.51	17.54	20.09	26.12
9	12.24	14.68	16.92	19.02	21.67	27.88
10	13.44	15.99	18.31	20.48	23.21	29.59
11	14.63	17.28	19.68	21.92	24.73	31.26
12	15.81	18.55	21.03	23.34	26.22	32.91
13	16.99	19.81	22.36	24.74	27.69	34.53
14	18.15	21.06	23.69	26.12	29.14	36.12
15	19.31	22.31	25.00	27.49	30.58	37.70
16	20.47	23.54	26.30	28.85	32.00	39.25
17	21.62	24.77	27.59	30.19	33.41	40.79
18	22.76	25.99	28.87	31.53	34.81	42.31
19	23.90	27.20	30.14	32.85	36.19	43.82
20	25.04	28.41	31.41	34.17	37.57	45.32
21	26.17	29.62	32.67	35.48	38.93	46.80
22	27.30	30.81	33.92	36.78	40.29	48.27
23	28.43	32.01	35.17	38.08	41.64	49.73
24	29.55	33.20	36.42	39.36	42.98	51.18
25	30.68	34.38	37.65	40.65	44.31	52.62
26	31.80	35.56	38.89	41.92	45.64	54.05
27	32.91	36.74	40.11	43.20	46.96	55.48
28	34.03	37.92	41.34	44.46	48.28	56.89
29	35.14	39.09	42.56	45.72	49.59	58.30
30	36.25	40.26	43.77	46.98	50.89	59.70
40	47.27	51.81	55.76	59.34	63.69	73.40
50	58.16	63.17	67.51	71.42	76.15	86.66
60	68.97	74.40	79.08	83.30	88.38	99.61
70	79.72	85.53	90.53	95.02	100.43	112.32

The calculated value must be equal to or exceed the critical value in this table for significance to be shown.

Mann-Whitney U test formulae

$$U_a = n_a n_b + \frac{n_a(n_a+1)}{2} - \sum R_a$$

$$U_b = n_a n_b + \frac{n_b(n_b+1)}{2} - \sum R_b$$

(U is the smaller of U_a and U_b)

Critical values for the Mann-Whitney U test

								$N_{\rm b}$								
	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
N _a																
<i>p</i> ≤ 0.0	5 (on	e-tail	ed), <i>p</i>	≤ 0.1	0 (tw	o-tail	ed)									
5	4	5	6	8	9	11	12	13	15	16	18	19	20	22	23	25
6	5	7	8	10	12	14	16	17	19	21	23	25	26	28	30	32
7	6	8	11	13	15	17	19	21	24	26	28	30	33	35	37	39
8	8	10	13	15	18	20	23	26	28	31	33	36	39	41	44	47
9	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54
10	11	14	17	20	24	27	31	34	37	41	44	48	51	55	58	62
11	12	16	19	23	27	31	34	38	42	46	50	54	57	61	65	69
12	13	17	21	26	30	34	38	42	47	51	55	60	64	68	72	77
13	15	19	24	28	33	37	42	47	51	56	61	65	70	75	80	84
14	16	21	26	31	36	41	46	51	56	61	66	71	77	82	87	92
15	18	23	28	33	39	44	50	55	61	66	72	77	83	88	94	100
16	19	25	30	36	42	48	54	60	65	71	77	83	89	95	101	107
17	20	26	33	39	45	51	57	64	70	77	83	89	96	102	109	115
18	22	28	35	41	48	55	61	68	75	82	88	95	102	109	116	123
19	23	30	37	44	51	58	65	72	80	87	94	101	109	116	123	130
20	25	32	39	47	54	62	69	77	84	92	100	107	115	123	130	138

								N _b								
N _a	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
					- /-											
o ≤ 0.0′	1 (one	e-taile	ed), <i>p</i>	≤ 0.0	2 (two	o-taile	ed)									
5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
6	2	3	4	6	7	8	9	11	12	13	15	16	18	19	20	22
7	3	4	6	7	9	11	12	14	16	17	19	21	23	24	26	28
8	4	6	7	9	11	13	15	17	20	22	24	26	28	30	32	34
9	5	7	9	11	14	16	18	21	23	26	28	31	33	36	38	40
10	6	8	11	13	16	19	22	24	27	30	33	36	38	41	44	47
11	7	9	12	15	18	22	25	28	31	34	37	41	44	47	50	53
12	8	11	14	17	21	24	28	31	35	38	42	46	49	53	56	60
13	9	12	16	20	23	27	31	35	39	43	47	51	55	59	63	67
14	10	13	17	22	26	30	34	38	43	47	51	56	60	65	69	73
15	11	15	19	24	28	33	37	42	47	51	56	61	66	70	75	80
16	12	16	21	26	31	36	41	46	51	56	61	66	71 	76	82	87
17	13	18	23	28	33	38	44	49	55	60	66	71	77	82	88	93
18	14	19	24	30	36	41	47	53	59	65	70	76	82	88	94	10
19	15	20	26	32	38	44	50	56	63	69	75	82	88	94	101	10
20	16	22	28	34	40	47	53	60	67	73	80	87	93	100	107	114
	N .															
								N								
	5	6	7	8	9	10	11	N _b 12	13	14	15	16	17	18	19	20
V _	5	6	7	8	9	10			13	14	15	16	17	18	19	20
							11		13	14	15	16	17	18	19	20
o ≤ 0.02	25 (or	ne-tai	led), į	p ≤ 0. 0	05 (tv	vo-tai	11 led)	12								
o ≤ 0.02 5	25 (or	n e-tai 3	led), _l	p ≤ 0. 0	05 (tv	vo-tai 8	11 led)	12	12	13	14	15	17	18	19	20
p ≤ 0.02 5 6	25 (or 2 3	n e-tai 3 5	led), 5 6	p ≤ 0. 0	05 (tv 7 10	vo-tai 8 11	11 led) 9 13	11 11 14	12 16	13 17	14 19	15 21	17 22	18 24	19 25	20 27
o ≤ 0.02 5 6 7	25 (or 2 3 5	n e-tai 3 5 6	led), j 5 6 8	p ≤ 0. 0 6 8 10	7 10 12	vo-tai 8 11 14	11 (led) 9 13 16	11 11 14 18	12 16 20	13 17 22	14 19 24	15 21 26	17 22 28	18 24 30	19 25 32	20 27 34
b ≤ 0.02 5 6 7 8	25 (or 2 3 5 6	3 5 6 8	5 6 8 10	p ≤ 0. 0 6 8 10 13	7 10 12 15	8 11 14 17	11 (led) 9 13 16 19	11 11 14 18 22	12 16 20 24	13 17 22 26	14 19 24 29	15 21 26 31	17 22 28 34	18 24 30 36	19 25 32 38	20 27 34 41
p ≤ 0.02 5 6 7 8 9	25 (or 2 3 5 6 7	ne-tai 3 5 6 8 10	5 6 8 10	p ≤ 0. 0 6 8 10 13	7 10 12 15 17	8 11 14 17 20	11 9 13 16 19 23	11 14 18 22 26	12 16 20 24 28	13 17 22 26 31	14 19 24 29 34	15 21 26 31 37	17 22 28 34 39	18 24 30 36 42	19 25 32 38 45	20 27 34 41 48
5 6 7 8 9	25 (or 2 3 5 6 7 8	3 5 6 8 10	5 6 8 10 12	p ≤ 0. 0 6 8 10 13 15 17	7 10 12 15 17 20	8 11 14 17 20 23	9 13 16 19 23 26	11 11 14 18 22 26 29	12 16 20 24 28 33	13 17 22 26 31 36	14 19 24 29 34 39	15 21 26 31 37 42	17 22 28 34 39 45	18 24 30 36 42 48	19 25 32 38 45 52	20 27 34 41 48 55
p ≤ 0.02 5 6 7 8 9 10	25 (or 2 3 5 6 7 8 9	ne-tai 3 5 6 8 10 11 13	5 6 8 10 12 14 16	6 8 10 13 15 17	7 10 12 15 17 20 23	8 11 14 17 20 23 26	11 9 13 16 19 23 26 30	11 14 18 22 26 29 33	12 16 20 24 28 33 37	13 17 22 26 31 36 40	14 19 24 29 34 39 44	15 21 26 31 37 42 47	17 22 28 34 39 45 51	18 24 30 36 42 48 55	19 25 32 38 45 52 58	20 27 34 41 48 55 62
5 6 7 8 9 10 11	25 (or 2 3 5 6 7 8 9	3 5 6 8 10 11 13	5 6 8 10 12 14 16 18	p ≤ 0. 6 8 10 13 15 17 19 22	7 10 12 15 17 20 23 26	8 11 14 17 20 23 26 29	9 13 16 19 23 26 30 33	11 14 18 22 26 29 33 37	12 16 20 24 28 33 37 41	13 17 22 26 31 36 40 45	14 19 24 29 34 39 44 49	15 21 26 31 37 42 47 53	17 22 28 34 39 45 51 57	18 24 30 36 42 48 55 61	19 25 32 38 45 52 58 65	20 27 34 41 48 55 62 69
5 ≤ 0.02 5 6 7 8 9 10 11 12	25 (or 2 3 5 6 7 8 9 11 12	ne-tai 3 5 6 8 10 11 13 14 16	5 6 8 10 12 14 16 18 20	p ≤ 0. 0 8 10 13 15 17 19 22 24	7 10 12 15 17 20 23 26 28	8 11 14 17 20 23 26 29 33	11 9 13 16 19 23 26 30 33 37	11 14 18 22 26 29 33 37 41	12 16 20 24 28 33 37 41 45	13 17 22 26 31 36 40 45 50	14 19 24 29 34 39 44 49 54	15 21 26 31 37 42 47 53 59	17 22 28 34 39 45 51 57 63	18 24 30 36 42 48 55 61 67	19 25 32 38 45 52 58 65 72	20 27 34 41 48 55 62 69 76
p ≤ 0.02 5 6 7 8 9 10 11 12 13 14	25 (or 2 3 5 6 7 8 9 11 12 13	ne-tai 3 5 6 8 10 11 13 14 16 17	5 6 8 10 12 14 16 18 20 22	p ≤ 0. 6 8 10 13 15 17 19 22 24 26	7 10 12 15 17 20 23 26 28 31	8 11 14 17 20 23 26 29 33 36	11 9 13 16 19 23 26 30 33 37 40	11 14 18 22 26 29 33 37 41 45	12 16 20 24 28 33 37 41 45 50	13 17 22 26 31 36 40 45 50 55	14 19 24 29 34 39 44 49 54 59	15 21 26 31 37 42 47 53 59 64	17 22 28 34 39 45 51 57 63 67	18 24 30 36 42 48 55 61 67 74	19 25 32 38 45 52 58 65 72 78	20 27 34 41 48 55 62 69 76
p ≤ 0.02 5 6 7 8 9 10 11 12 13 14	25 (or 2 3 5 6 7 8 9 11 12 13 14	ne-tai 3 5 6 8 10 11 13 14 16 17 19	5 6 8 10 12 14 16 18 20 22 24	p ≤ 0. 6 8 10 13 15 17 19 22 24 26 29	7 10 12 15 17 20 23 26 28 31 34	8 11 14 17 20 23 26 29 33 36 39	11 9 13 16 19 23 26 30 33 37 40 44	11 14 18 22 26 29 33 37 41 45 49	12 16 20 24 28 33 37 41 45 50 54	13 17 22 26 31 36 40 45 50 55	14 19 24 29 34 39 44 49 54 59 64	15 21 26 31 37 42 47 53 59 64 70	17 22 28 34 39 45 51 57 63 67 75	18 24 30 36 42 48 55 61 67 74 80	19 25 32 38 45 52 58 65 72 78 85	20 27 34 41 48 55 62 69 76 83
6 7 8 9 10 11 12 13 14 15	25 (or 2 3 5 6 7 8 9 11 12 13 14 15	ne-tai 3 5 6 8 10 11 13 14 16 17 19 21	5 6 8 10 12 14 16 18 20 22 24 26	p ≤ 0.0 6 8 10 13 15 17 19 22 24 26 29 31	7 10 12 15 17 20 23 26 28 31 34 37	8 11 14 17 20 23 26 29 33 36 39 42	11 9 13 16 19 23 26 30 33 37 40 44 47	11 14 18 22 26 29 33 37 41 45 49 53	12 16 20 24 28 33 37 41 45 50 54 59	13 17 22 26 31 36 40 45 50 55 59 64	14 19 24 29 34 39 44 49 54 59 64 70	15 21 26 31 37 42 47 53 59 64 70 75	17 22 28 34 39 45 51 57 63 67 75 81	18 24 30 36 42 48 55 61 67 74 80 86	19 25 32 38 45 52 58 65 72 78 85 92	20 27 34 41 48 55 62 69 76 83 90 98
p ≤ 0.02 5 6 7 8 9 10 11 12 13 14 15 16	25 (or 2 3 5 6 7 8 9 11 12 13 14 15 17	ne-tai 3 5 6 8 10 11 13 14 16 17 19 21 22	5 6 8 10 12 14 16 18 20 22 24 26 28	p ≤ 0.6 8 10 13 15 17 19 22 24 26 29 31 34	7 10 12 15 17 20 23 26 28 31 34 37	8 11 14 17 20 23 26 29 33 36 39 42 45	9 13 16 19 23 26 30 33 37 40 44 47 51	11 14 18 22 26 29 33 37 41 45 49 53 57	12 16 20 24 28 33 37 41 45 50 54 59 63	13 17 22 26 31 36 40 45 50 55 59 64 67	14 19 24 29 34 39 44 49 54 59 64 70 75	15 21 26 31 37 42 47 53 59 64 70 75 81	17 22 28 34 39 45 51 57 63 67 75 81 87	18 24 30 36 42 48 55 61 67 74 80 86 93	19 25 32 38 45 52 58 65 72 78 85 92	20 27 34 41 48 55 62 69 76 83 90 98
p ≤ 0.02 5 6 7 8 9 10 11 12 13 14 15 16	25 (or 2 3 5 6 7 8 9 11 12 13 14 15	ne-tai 3 5 6 8 10 11 13 14 16 17 19 21	5 6 8 10 12 14 16 18 20 22 24 26	p ≤ 0.0 6 8 10 13 15 17 19 22 24 26 29 31	7 10 12 15 17 20 23 26 28 31 34 37	8 11 14 17 20 23 26 29 33 36 39 42	11 9 13 16 19 23 26 30 33 37 40 44 47	11 14 18 22 26 29 33 37 41 45 49 53	12 16 20 24 28 33 37 41 45 50 54 59	13 17 22 26 31 36 40 45 50 55 59 64	14 19 24 29 34 39 44 49 54 59 64 70	15 21 26 31 37 42 47 53 59 64 70 75	17 22 28 34 39 45 51 57 63 67 75 81	18 24 30 36 42 48 55 61 67 74 80 86	19 25 32 38 45 52 58 65 72 78 85 92	20

								N _b								
	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
N _a																
<i>p</i> ≤ 0.0	05 (or	ne-tai	led), _/	p ≤ 0.	01 (tv	vo-tai	led)									
5	0	1	1	2	3	4	5	6	7	7	8	9	10	11	12	13
6	1	2	3	4	5	6	7	9	10	11	12	13	15	16	17	18
7	1	3	4	6	7	9	10	12	13	15	16	18	19	21	22	24
8	2	4	6	7	9	11	13	15	17	18	20	22	24	26	28	30
9	3	5	7	9	11	13	16	18	20	22	24	27	29	31	33	36
10	4	6	9	11	13	16	18	21	24	26	29	31	34	37	39	42
11	5	7	10	13	16	18	21	24	27	30	33	36	39	42	45	48
12	6	9	12	15	18	21	24	27	31	34	37	41	44	47	51	54
13	7	10	13	17	20	24	27	31	34	38	42	45	49	53	56	60
14	7	11	15	18	22	26	30	34	38	42	46	50	54	58	63	67
15	8	12	16	20	24	29	33	37	42	46	51	55	60	64	69	73
16	9	13	18	22	27	31	36	41	45	50	55	60	65	70	74	79
17	10	15	19	24	29	34	39	44	49	54	60	65	70	75	81	86
18	11	16	21	26	31	37	42	47	53	58	64	70	75	81	87	92
19	12	17	22	28	33	39	45	51	56	63	69	74	81	87	93	99
20	13	18	24	30	36	42	48	54	60	67	73	79	86	92	99	105

The calculated value must be equal to or less than the critical value in this table for significance to be shown.

Wilcoxon Signed Ranks test process

- Calculate the difference between two scores by taking one from the other
- Rank the differences giving the smallest difference Rank 1
 Note: do not rank any differences of 0 and when adding the number of scores, do not count those with a difference of 0, and ignore the signs when calculating the difference
- · Add up the ranks for positive differences
- Add up the ranks for negative differences
- T is the figure that is the smallest when the ranks are totalled (may be positive or negative)
- N is the number of scores left, ignore those with 0 difference

Critical values for the Wilcoxon Signed Ranks test

	Level of signif	icance for a one-	tailed test
	0.05	0.025	0.01
	Level of signif	icance for a two-	tailed test
n	0.1	0.05	0.02
N=5	0	-	-
6	2	0	-
7	3	2	0
8	5	3	1
9	8	5	3
10	11	8	5
11	13	10	7
12	17	13	9

The calculated value must be equal to or less than the critical value in this table for significance to be shown.

Answer ALL questions.

	Answer ALL questions.	
	SECTION A: BIOLOGICAL PSYCHOLOGY	
1	Positron Emission Tomography (PET) scans are often used to produce detailed 3D images of the brain.	
	(a) Describe Positron Emission Tomography (PET) as a brain-scanning technique.	(3)
	Raine et al. (1997) used PET scans as part of their procedure.	
	(b) Give one aim of Raine et al's (1997) study.	(1)
		(1)
	(a) Cive are construited of Deire at alle (1007) at the	
	(c) Give one conclusion of Raine et al's (1997) study.	(1)

(d) Explain two strengths of the methodology used i	in Raine et al's (1997) study. (4)
1	
2	
	(Total for Question 1 = 9 marks)

2 A researcher wanted to investigate whether there was a relationship between testosterone levels and aggression levels in males. An advert was placed in the magazine *Male Life* asking for males between 20 and 50 years old to take part in this research. Seven males were recruited and they were given a blood test to determine their testosterone levels and a questionnaire to assess their level of aggression out of 40.

The results of the questionnaire and the blood tests are displayed in **Table 1**.

Participant number	Aggression score /40	Testosterone level (nanograms per decilitre)		
1	19	620		
2	12	550		
3	7	420		
4	35	950		
5	10	400		
6	12	370		
7	32	900		

Table 1

(a) Name the sampling technique that was used for this investigation.	(1)
(b) Explain one limitation of the sampling technique used for this investigation.	(2)

Title:	

shown by the results of thi	is investigation.		(2)
			\-/
		(Total for Que	estion 2 = 8 marks)

3 Sophie is experiencing trouble at school due to her inability to control her temper. She has been referred to the school counsellor who upon talking to her suspects that the problem is partly due to the recent events in her life.

In one of the sessions he assessed Sophie using the teenage version of a well-known scale that measures the level of stress due to life events and gives an arbitrary score for every time a particular event happens. These scores are added up to give an overall score. The size of this score gives an indication of a person's level of stress which could be the cause of the recent increase in aggressive behaviour.

Below is a portion of the scale showing the events that have happened and how she scored on it.

Event	Arbitrary Score	Times occurred in the year	Total for each type of event
Divorce of parents	65	1	65
Puberty	65	1	65
Death of a family member	60	1	60
Serious personal injury	45	1	45
Starting a new school	45	2	90
Parent remarries	35	1	35
		Total	380

aggression. (2)	Describe how the counsellor would use this data to advise his client to reduce her aggression. (2)		
	aggression.		
		aggression.	(2)
			(2)

4 Evaluate the use of biological and psychodyna	amic explanations of human behaviour.
	(Total for Question 4 = 8 marks)
	TOTAL FOR SECTION A = 29 MARKS

SECTION B: LEARNING THEORIES	
a) Identify the type of reinforcement being used in the following examples.	
(i) If Grishma cleans her mother's car, she gets extra pocket money.	(1)
(ii) Sally always takes medication to get rid of her headache as she knows within 15 minutes she will feel much better.	that (1)
b) Explain which type of reinforcement could ensure that a student keeps the room tidy.	eir
	(2)
(Total for Question :	5 = 4 marks)
(Total for Question !	5 = 4 marks)

6 A psychology student is investigating behaviour at road crossings controlled by pedestrian signalling systems. A green light indicates that it is safe to cross the road. A red light indicates that pedestrians should wait.

Behaviour was recorded only for people arriving at the crossing when the light was red. The student observed six separate crossings of groups of pedestrians.

Table 2 shows the results of each observation.

Sets of lights	Sets of lights Males		Females		
	Waited for green light	Did not wait for green light	Waited for green light	Did not wait for green light	
Α	4	7	8	2	
В	3	6	2	3	
С	5	7	7	1	
D	4	5	5	5	
E	7	2	4	3	
F	6	4	7	2	

Table 2

(a) (i)	Calculate the mean number of females who waited for the green light.	(1)
(ii) State the range of the data set for the males who did not wait for the green light.	(1)
(ii	i) Give a reason why standard deviation might be a more useful measure of dispersion than range.	(1)

(b) Give a suitable directional alternative hypothesis for this study.	(2)
One situational variable that could have affected the results of this study could have been the weather.	
(c) Explain how poor weather conditions could have affected the results of this study.	(2)
(Total for Question 6 = 7 ma	rks)
Watson and Rayner (1920) investigated the effectiveness of classical conditioning in humans, looking specifically at whether an infant could be conditioned to have a phobia of a white rat.	
Little Albert was removed from the study before Watson and Rayner could cure his phobia.	
Explain how one treatment from learning theory could have been used to cure Little Albert of his phobia.	
(Total for Question 7 = 2 ma	

8	For your practical investigations you will have conducted at least one observation that yielded qualitative data requiring thematic analysis.	
	(a) Describe how qualitative data was gathered during your observation.	(2)
	(b) Describe the sampling method you used for your observation.	(2)
	(c) Explain two ways you could improve your observation in the future.	(4)
	(Total for Question 8 = 8 m	arks)

9	Evaluate the use of non human animals in psychological research. You should make reference to Pavlov's use of dogs in your answer.
••••	
	(Total for Question 9 = 8 marks)
_	(TOTAL FOR SECTION B = 29 MARKS)

	SECTION C		
10	'Of all biological factors, hormones play the most important role in explaining human aggression, however they have little role to play in social learning theory explanations'.		
	To what extent do you agree with this statement?		
	To what extent do you agree that this statement.	(12)	
		(/	

(Total for Question 10 = 12 marks)
TOTAL FOR SECTION C = 12 MARKS TOTAL FOR THE PAPER = 70 MARKS